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An Algorithm for the Class of Pure Implicational Formulas 
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Abstract 

Heusch introduced the notion of pure implicational formulas. He showed that the falsifiability 
problem for pure implicational formulas with k negations is solvable in time 0(nk). Such 

falsifiability results are easily transformed to satisfiability results on CNF formulas. 
We show that the falsifiability problem for pure implicational formulas is solvable in time 

0(kkn2), which is polynomial for a fixed k. Thus this problem is fixed-parameter tractable. 

1    Introduction 

Since Cook's [1] proof of NP-completeness for 3-SAT, numerous studies of complexity of testing 

satisfiability and/or falsifiability for particular classes of propositional formulas have been done. 

Two important classes are CNF and DNF formulas. For CNF formulas, Cook showed that testing 

satisfiability is NP-complete, whereas testing falsifiability can be done in linear time. For DNF the 

reverse is true: testing satisfiability (resp. falsifiability) for DNF formulas can easily be reduced to 

testing falsifiability (resp. satisfiability) for CNF formulas. Other classes of formulas, such as Horn, 

extended Horn, q-Horn, and SLUR, have been shown to be solved in polynomial time (see [9] for 

algorithms and credits). Recursively defined hierarchies of incrementally harder classes have also 

been defined and studied [3, 5, 7]. Formulas on level k of these hierarchies typically can be solved 

in 0(nk) time. 

Downey and Fellows [4] considered hierarchies of problems. Levels of such a hierarchy are 

distinguished by a parameter k which in some sense measures the density of an instance; any 

algorithm to solve instances of length n for fixed Ar takes time bounded by some Cfc(l + nek). Now as 

A; increases, does the value of e* increase, or does it hold steady while only the value of cj, increases? 

An algorithm of the latter type they call fixed parameter tractable. Fixed parameter tractability 

has obvious implications for algorithm efficiency on instances where n is much larger than k; for 

more information about fixed parameter tractability we refer the reader to Downey and Fellows' 

papers. In this paper we show that the falsifiability problem, described below, for pure implicational 
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formulas of length n containing at most k occurrences of f, is fixed parameter tractable. In the 

cases of [3, 5, 7], it is not known whether there are polynomial-time fixed parameter algorithms. 

As far as we know, the results of this paper are the first fixed parameter tractability results for 

hierarchies of satisfiability. 

Following the work of Peter Heusch [6], we consider formulas in a different "normal form": 

formulas built up from the proposition letters (or propositional variables) with -> (implication) 

and a propositional constant f for false (so -if is always true) — plus parentheses, of course. Call 

a formula built up with only these connectives pure implicational. We consider algorithms for 

determining satisfiability and falsifiability of formulas containing at most two occurrences of each 

proposition letter and at most k occurrences of f. 

Actually, Heusch considered only falsifiability, and he did not allow occurrences of f. Rather, he 

considered formulas whose only propositional connective is —►, which contain at most k occurrences 

of some distinguished proposition letter z, and which contain at most two occurrences of every other 

proposition letter. However, he showed that determining falsifiability was hardest in the case of 

formulas of the form 
a1-^(a2^(.. .-*(ah-+z))). 

In this case z is set to false in every falsifying truth assignment. Thus it is equally difficult to 

determine falsifiability of the formula 

ai-*(a2->-(. • • -*-(«Ä-*f)))- 

In this way Heusch essentially reduced his context to the one we use. 

Since it slightly simplifies our arguments, we shall focus on satisfiability. It is equally difficult to 

test for falsifiability and to test for satisfiability, since a formula <f> is satisfiable if and only if (<£-»-f) 
is falsifiable, and <f> is falsifiable if and only if (0-+f) is satisfiable. Without loss of generality, we 
limit the study to satisfiability of a single pure implicational formula <j>. For suppose cti,...,am 

are pure implicational formulas. Then {ai,. ..,am} is satisfiable if and only if 

ai->-(...-+(am-+f)) 

is falsifiable. 

Theorem 1.1 (Heusch [6]) Testing falsifiability for pure implicational formulas containing at 

most two occurrences of each proposition letter is NP-complete. E 

Corollary 1.2 Testing satisfiability for pure implicational formulas containing at most two occur- 

rences of each proposition letter is NP-complete. O 



But by fixing the value of the extra parameter, the number of occurrences of f (or the number 

of occurrences of z in his case), Heusch was able to get a type of tractability result for special cases. 

From this point on, we use n to represent the length of a pure implicational formula. 

Theorem 1.3 (Heusch [6]) Testing falsifiability for pure implicational formulas, oflengthn, con- 

taining at most two occurrences of each proposition letter and at most k occurrences of f can be 

performed in time 0(nk). n 

The following corollary is trivial; we assume that more careful analysis of Heusch's proof would 

easily change the k + 1 to a k below. 

Corollary 1.4 Testing satisfiability for pure implicational formulas, of length n, containing at 

most two occurrences of each proposition letter and at most k occurrences of f can be performed in 

timeO(nk+1). n 

The organization of the paper is as follows. In Section 2 we show how to transform pure 

implicational formulas to a forest of trees containing no more nodes than the number of implication 

connectives. The trees are such that there is a collection of "consistent paths," from root to leaf, 

one for each tree, if and only if the original formula is satisfiable. The search for such a collection is 

simplified by the fact that inconsistencies arise only between a leaf and its "shadow." In Section 3 

we devise a 0(kkn2) algorithm for searching a forest for inconsistent paths. The collection of 

algorithms used in all stages is presented as a whole at the end of the section. 

2    Exploring possibilities 

Our algorithm consists of three stages. The first consists of parsing and translating the given 
formula into a different propositional form. The second constructs at most k trees of literals, where 

k is the number of occurrences of f in the given formula. The third stage consists of solving a 

combinatorial problem on the trees. The solution to this tree problem determines the satisfiability 

of the given formula. 

2.1    Initial parsing/translation 

The first stage of the algorithm involves replacing a pure implicational formula </> with a set 0 = 

{öi,..., ÖTO} (TO < n) of formulas in a larger set of proposition letters, where <f> is satisfiable if and 

only if 0 is. I.e., (j> and 0 are equisatisfiable. 



1. We start with a pure implicational formula, for example, 

(((((ao-^ai)-*f)-*a2)->f)-v((f^ao)-*(o2-^f))). 

We parse, counting levels of nesting to the left hand side of the -* 's; below we show nesting 

on the left by dropping down to lower lines: 

( ft      -(      ft ^(fl2-f)))- 
( £ -f) (f-Oo) 

( ft       ->Ö2) 
( | -*) 
(a0-*ai) 

2. Next, at even numbered levels (> 0) of nesting on the left, we first replace the embedded 

formulas above with new proposition letters. 

( j    ->(    j       -(a3-f))). 
( c0      -s-f)      (f-^ao) 

( £       -«2) 
(        * -f) 

(o0->-ai) 

In order to make sure that our new set of formulas and the original formula </> are equisat- 

isfiable, we need also to relate c,-'s to the formulas they replace. It is natural to add in an 

axiom c\ <-*(a0—>ai). That would, however, force cx to occur more than twice in our final 

translation. Fortunately, we need assert only the -> direction of the equivalence to guarantee 

equisatisfiability. Thus we get our translation, in this case a set 0 of three formulas: 

( 1    "*(    fl.       -*(°2-*f)))- 
( c0      -*f)      (f->ao) 

c0-       ( ft    -a2) 

(      ex      -*) 
cl~"*• (a0~"^l) 

We sketch the proof of equisatisfiability: If the original formula <f> has a model v, we expand 

i/ by setting i/(c,-) to the value under y of the corresponding subformula of <f>, which yields a 

model of 0. Conversely, suppose v is a model of 0; we show that v is also a model of cj>. As 

noted in our discussion of our intuition above, if for each c,-, I/(CJ) is the value of the formula 

it replaces in the expansion above — i.e., if v(c0) = j/((ci->f)-»a2) and v(c\) = i>(ao-»ai), 

then v is a model of </>.  So suppose not.  Pick all the highest level formulas for which this 



property fails. For example, suppose here that u(c0) ^ z/((ci^f)-+a2). Since 0 contains the 

formula c0 -> ((ci->f)-*a2), it must be that i/(cQ) = false and z/((ci-*-f)-»a2) = irue. From 

the truth table for propositions nested an even number of times on the left of an -»•, we can 

see that if the top formula is satisfied when v(c0) is false, it is satisfied with any formula 

substituted in for CQ. 

Note that now not only the original proposition letters (the a,-'s), but also the new ones (the 

c;'s), occur at most twice in 0. 

3. We now have three formulas in our set 0, each with at most one level of nesting on the 

left-hand side of the -> 's. 

0o   =    (co-f)-((f-ao)-(a2-f)) 

0\    =   c0^((ci->f)-^a2) 

02    =    ci-»(a0->ai) 

We finish with a simple substitution of tautologically equivalent formulas. We replace the 

nested-on-the-lefi occurrences of —>■ with their DNF equivalents, yielding 

00 =    Hk>Vf)->((-.fVao)->(a2->f)) 

01 =    co-K(->ciVf)->a2) 

02 =    ci-»-(ao-»ai); 

we replace each remaining/?i->(/32^(.. .ßj)) with the equivalent -■/^-»■(-i/öiV-i/^V ... —>/3j_i), 

yielding 
0O    =      -,f   -+    -i(-ic0Vf)V-.(-.fVao)V-.a2 

0!    =    -ia2    -»■    (-icoV-i(-.ciVf)) 

02    =    -IÖ1    —►    -iCiV-iao; 

and we simplify using deMorgan's laws and double negation, yielding finally 

60    =      -if   -*    (c0A->f)V(iA-iOo)V-ia2 

0!    =    -ia2    ->    (-iCoV(ciA-if)) 

#2    =    -iß!    —>    -iciV-iao- 

Comment 2.1 Note that any atom that occurs only positively can be set to true, without affecting 

the satisfiability of these formulas. Therefore, before we continue, we perform this simplification. 

(This simplifies later exposition, and can be done in time 0(n2).) 

Note the important properties of 0: 

• 0 and 4> are equisatisfiable. 



• Each proposition letter — a; or ct- — occurs at most twice in 0. 

• The constant f occurs k times in 0. 

• Each 0; is an implication, whose hypothesis consists of a negative literal (either a ->a{ or a ->c; 

or a -if), and whose conclusion consists of a disjunction, where each disjunct is the conjunct 

of one negative literal and zero or more (zero or one in our example) positive literals. 

All occurrences of f on the right-hand sides of the 0;'s could be simplified out, although our 

algorithm assumes that we do not do so. The complexity of the algorithm will be given in terms 

of the number k' < k of occurrences of -if on the left hand sides of the 0,'s. 

2.2    Building trees of choices 

We now have a collection 0 = {0X,..., 0m} of formulas as described above. As we noted earlier, our 

strategy is now dual to the strategy of finding whether a set of Horn clauses is satisfiable. There 
one starts with a default truth assignment of false to every variable and uses the implications to 

identify variables which must be true. Here we start with a default truth assignment of true to 

every variable and use the implications to identify choices of variables to set to false to satisfy 

the formulas. If there are no occurrences of -if in the hypotheses of the 0;'s (i.e., k! = 0) then 

{#!,.. . ,0m} is satisfied by the all-true assignment. 

We want to search for a minimal change to the all-true truth assignment to satisfy {0i,..., 0m}. 

To start out, we must satisfy each of the k' formulas with head -if. In order to do that we must 

satisfy one of the disjuncts of each body. Suppose we satisfy a disjunct ->v, and suppose some other 

9{ is -iv-*->wV-iX] then we will also have to set either tu or a; to false. To keep track of our choices, 

for each such formula 0; = -if-»- ..., we build a tree T,- with root labeled -if. Associated with 

each interior node and leaf of these trees will be a set of labels, corresponding to the literals in the 

relevant disjunction of some formula, as described in the algorithm below. Later we shall find an 
interpretation by choosing a branch through the tree; the literals labeling a node will be literals we 

shall be forced to satisfy when the algorithm chooses that branch. 

For notational convenience below, we assume that we have moved the 0,-'s with hypothesis -if 

to 0i,...,0fe/. 

Algorithm 2.1 

For i — 1,..., k' 

Build tree Ti as follows: 

Create a root r,- labeled -if. 
For each disjunct Z1A/2A • • • Alj of the consequent of 0,-, 

6 



Create a child of r; with labels /l5 /2,..., lj. 

Mark that child unexplored 

While there are unexplored nodes: 
Pick any unexplored node w and mark it explored. 

If the node has a negative literal ->a as a label 

and does not have f as a label 

If there is a 6j with hypothesis ->a 
(there can be only one such 0j by the 2-occurrence restriction) 

For each disjunct liAl2A ■ • • Mj of the consequent of 6j 

Create a child of w with labels l\, l2, ■ ■ ■, lj 

Mark that child unexplored. 

Remove all nodes all of whose descendents are labeled f. 

If a node does not have any children, mark it as a leaf. 

As we build the trees, we also build the following: 

• An array Occurrence,  indexed by the proposition letters,  whose index-a position contains 

pointers to the (at most 2) occurrences of a in the T{ 's. 

• For each node w, an array, indexed by the proposition letters, whose index-a position stores 

whether a and/or ->a label nodes on the path to w from its tree's root. 

Comment 2.2 We immediately use the auxiliary data structures for a simplification: if any neg- 

ative literal -ia occurs negatively in two leaves, those leaves can, without loss of generality, be 

removed, and their parent nodes marked as leaves. 

It is easy to see how to construct the 0's and the T;'s in time n2. (That is almost certainly 

not the optimal time. However, other phases of our satisfiability algorithm are also 0(n2), so this 

suffices for our final analysis.) 

We shall use the trees above to help us search for a satisfying truth assignment for {0i,..., 0m}. 
We shall build up this assignment in stages, combining partial truth assignments. To simplify the 

exposition, we introduce a notion of a set of literals satisfying such a formula. We shall consider a 

truth assignment to be a set A of literals such that, for each proposition letter a, exactly one of a 

and -ia is in A. 

Definition 2.1 LetlMVC be the set of formulas whose only propositional connectives are f, -1, 

-►, V, andV. For a set of literals, A, we say that A satisfies 6, written A\=S,forS£ 1MVC, if 

the following hold. 



. A |= -fM ¥=f- 

• For I either a or ->a, a a proposition letter, A \= I if I G A. 

• A \= aV/3 ifA\=aorA\=ß. 

• A \= a/\ß if A \= a and A \= ß. 

• A \= a^ß if A ft a or A |= ß. 

Definition 2.2 Let T,- be one of the trees above and let P be any path on T; (from the root to any 

leaf ofTi). Then Ap is the set of labels of nodes of P. 

So, to satisfy {9i,...,9m} with a partial truth assignment we have an easy solution: First 

pick one path P,- from each T; (1 < i < k'), and start with the interpretation AQ = Ap1 U 

■•■U Ap ,. That is enough to satisfy chains of inferences starting with 0l5..., 0fc. Then set A = 

.4oU{proposition letters v : v, -iv ^ AQ}. This (vacuously) satisfies all the 0,-'s not addressed before, 

since each 0; that is not used in some T; has a negated literal as hypothesis. If 0; has hypothesis 

-ia, and 6i was not used in the construction of any Tj, -io does not occur as a label in any of the 

Tj's. Thus, ->a does not occur in Ao, so either a G Ao or a G A 

The only difficulty with the above construction is that Ao may well be inconsistent, i.e., it may 

contain both a and ->a for some proposition letter a. Thus we have: 

Theorem 2.1 Let 6i,...,6m and T\, ...,Tk> be as above, and let A be a truth assignment. Then: 

1. IM |= {0i,..., 0m} then there are paths Pi of T,-, i = l,...,k' such that Ap{ C A. 

2. If (1) there are paths PiofTi,i = l,...,k' such that Api C A, and (2) if, for each proposition 

letter a not appearing in any of the Pi 's, a G A, then A \= {0i,..., 0m}. 

3. {0i,..., 0m} is satisfiable if and only if there are paths Pi ofTi, i= l,...,k' such that for no 

atom a are both a and ->a in Ap1 U Ap2 U • • -Apk,. 
a 

Remark 2.2 The above theorem can be simplified further. Since each variable can appear at most 

twice in {0i,.. .,0m}? and since a variable is used to label a node only when it appears as a conse- 

quent in one of the 6i 's, the only way we can have both a, ->a in Ap1 U Ap2 U • • -Apk, is for a to 

label some node of some Pi and for -<a to label the leaf of some Pj. 

Note that, by the 2-occurrence property for atoms, and by the construction of the T,-'s, a 

negative literal appears in these trees either uniquely in an interior node of some T,-, or in some leaf 

(or possibly two leaves). 



If we pick two paths, they are inconsistent with each other iff there is an atom a such that a 

appears in one path, and -ia appears in the other. If this happens, then -ia is a label of some leaf 

w. Therefore, if we wish to avoid inconsistencies, once we pick a leaf, w, with a label ->a, we must 

avoid all paths through the (possibly nonexistent) node y with label a. In other words, no paths 

can contain y, nor any of its descendants. We call the set of nodes in the subtree (cone) rooted at 

y the shadow of w (Shadow(w)). 

If a leaf does not have a negative label, we say it has an empty shadow. 

Remark 2.3 Let {0X,..., 6m} and Ti,...,Tk< be as above. Then {0a,..., 0m} is satisfiable iff there 

is a set of leaves w\ 6 1\,..., wy G T' where no W{ is in any WJ 's shadow. 

Remark 2.4 Using the data structures specified in Algorithm 2.1, given any two leaves W{,Wj, we 

can test in constant time whether wi € Shadow(wj). 

2.3    The reduction to graph theory 

In the previous subsections we reduced, in at most quadratic time, satisfiability of the original pure 

implicational formula to the following combinatorial problem on trees, where n is the length of the 

original formula <f> (including parentheses — this allows for our new constants c7i) and k' is less 

than or equal to the number of occurrences of f in (j). 

Remember the following facts: 

• Ti,..., Ty are labeled trees, with a total of at most n nodes. 

• There is a partial function Shadow from leaves to sets of nodes. For each leaf w, if Shadow(w) / 

0, Shadow(w) consists of just the descendents of a single node in just one of the trees. 

Definition 2.3 

• A shadow-independent set in {7\,. ..,Ty} is a set of leaves {w{ € T; : 1 < i < k'} such that 

no leaf Wi is in any Wj's shadow (including its own). 

• The shadow problem for {Tl5...,Tfc/} is,   "Does {Ti,...,Tfc/} have a shadow-independent 

set?" 

Proposition 2.5 If S\,S2 are two shadows, then one of the following must hold: (1) Si, 52 are 

disjoint, (2) Si C S2, or (3) S2 C Sx. 



A simple upper bound on the difficulty of the shadow problem can be found by reducing it to 

the independent set problem. (Since this reduction gives only an upper bound on the complexity 

of the problem, it is omitted.) Thus we can apply to the shadow problem any general algorithm 

for finding whether a graph has a ^-independent set. The fastest known (at least to us) algorithm 

is an 0(n^2+e)/3) algorithm by Nesetril and Poljak [8], where 2 + e is the best known exponent for 

fast matrix multiplication (see [2]). This is an improvement on Heusch's algorithm, but it is still 

not fixed parameter tractable. 

Thus, short of showing that the fc-independent set problem is fixed parameter tractable, our 

approach must amount, essentially, to finding special features of the resultant graph which allow 

for faster algorithms. We already have such a result in Proposition 2.5. In the remaining sections 

we show that the special features given in Proposition 2.5 are in fact strong enough: we give an 

0(n2) algorithm (for each k) for this problem. 

3    Solving the Shadow Problem 

3.1    Easy Simplifications 

Before we start, we identify, for each leaf w of each tree T;, the tree Tj in which Shadow(w) lies. 

If w has an empty shadow, we pick an arbitrary tree Tj ^ T,- and declare that w has an empty 

shadow in tree Tj. 

Given the set of trees {Ti,.. .,Tfc/}, we can perform the following simplifications in quadratic 

time. Clearly, none of the simplifications changes the answer to the shadow problem. Note that 

the simplification steps must be repeated until no further changes are made or unfalsifiability has 

been determined: 

Algorithm 3.1 Repeat the following simplifications until there are no more simplifications to be 

performed. 

1. If any leaf shadows itself, delete the leaf — since no unshadowed set could contain such a leaf. 

2. If any leaf's shadow is in its own tree, but does not include the leaf itself, delete the shadow 

(i.e., remove the label -*a from the leaf and the label a from the base of the shadow) — since 

we need to pick only one leaf from each tree anyway. 

Redefine the leaf's shadow to be an empty shadow in some other tree. 

3. If any leaf's shadow is an entire tree Ti, remove the leaf — since no unshadowed set could 

contain such a leaf. 
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4. Remove any node which is not marked as a leaf, yet has no children. (This just prunes interior 

nodes whose children have all been removed.) 

5. If any node has only one child, merge it with its child, labeling the merged node with all literals 

labeling either the original node or its child. If its child was a leaf, mark it as a leaf. 

6. If any tree becomes empty, return "unsatisfiable". 

Remark 3.1 Algorithm 3.1 can be performed in time 0(n2). 

3.2    A partition into shadow patterns 

To find a shadow-independent set of leaves, we must pick one leaf from each tree. Think of a 

directed edge going from the leaf's tree to the shadow's tree (which, by the simplifications above, 

must be a different tree). Call the resultant graph on the k trees the shadow pattern of that set of 

leaves. Note that each node in a shadow pattern has out-degree one, so there are (k - l)k possible 

shadow patterns on the k trees. We shall partition our algorithm by looking separately at each of 

the (k - l)k possible shadow patterns, checking to find if there is an unshadowed set inducing that 

shadow pattern. 

Say that a leaf /; matches a shadow pattern P if U is in tree T;, the edge in the shadow pattern 

from T{ goes to Tj, and /,'s shadow is in Tj. A set of leaves matches a shadow pattern if every leaf 

in the set matches the pattern. 

Note that, to search for a shadow-independent set matching a shadow pattern Ph, we can clearly 

search each weakly connected component of Ph (i.e., each component of the undirected version of 

Ph) separately. The following algorithm is then clearly correct, since each choice of k leaves, one 

from each tree, matches one of the shadow patterns. We use it as the outside control of our solution 

algorithm. 

Algorithm 3.2 

For each shadow pattern Ph, 1 < h < (k - l)k, 

Make a copy T/1 of each of the original trees T; 

Delete from T-1 all leaves which do not match shadow pattern Ph. 

Simplify Tf as in Algorithm 3.1. 

For each weakly connected component W of Ph 
search for a shadow-independent set onW. (|) 

// every weakly connected component has a shadow-independent set 

return "satisfiable." 

Return "unsatisfiable". 
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The difficulty, of course, is in step (f). We shall show that we can implement that step in 

O(n^), where nw is the total number of nodes in the trees T/1 € W. It will Mow that the above 

algorithm can be performed in time 0(kkn2), since we have already noted that Algorithm 3.1 takes 

only quadratic time. (Clearly, it suffices to caU Algorithm 3.1 on each component W separately.) 

3.3    Solving for a fixed component of a fixed shadow pattern 

All that is left is to show, as promised above, that we can test whether a weakly connected compo- 

nent {T% ,..., T% } of {T/1,..., T£} has a shadow-independent set in time quadratic in the number 

of nodes in the component. The essential intuition used by the algorithm is the following: 

1. In acyclic parts of the component, we can easily perform the test by brute force, working our 

way in from the leaves. We do this by pruning away nodes which cannot be in a shadow- 

independent set. 

2. In the cyclic part of the graph, we show that, unless the pattern of shadows (after the pruning 
described above) has a specific, easily recognized structure described in Theorem 3.3, there 

is a shadow-independent set. 

Since Ph is a directed graph on k nodes where each vertex has out-degree one, each of its 

weakly-connected components is a directed tree with edges directed toward the root plus one back 
edge. Or, another way of looking at it, each component consists of a single directed cycle c plus a 

set of mutually disjoint trees {<i,..., tr} (directed from leaves to root), where the root of each tree 
is also a member of the cycle, and otherwise the cycle and the trees are disjoint. We start with a 

separate pruning algorithm for the trees f,-: 

Algorithm 3.3 

Pruning Algorithm: 

Input: A component W of Ph along with the member trees T-1, consisting of: 

1. A collection of mutually disjoint trees, t\,..., tf, and 

2. A single cycle c, where 

a. the roots of the tg 's are elements of c, 

b. no other nodes are shared by the tgs and c. 

The nodes of c and the tg 's are all trees T-1 created before. 

Action: 
From each tree, prune those nodes that cannot be in any shadow-independent set. 

Identify the c and the tg 's. 
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For each tree tg 

For each node TJ1 oftg, starting with the leaves oftg 

and working backwards to the root 

If r/1 has children in tg 

For each child Tf ofTf in tg 

For each leaf w of Tf 
If w is in the shadow of every leaf of Tf 

delete w from Tj1. 

Simplify W as in Algorithm 3.1. 
If the simplification algorithm returned "unsatisfiable" 

return that there is no shadow-independent set matching Ph. 

Lemma 3.2 

1. If a leaf U of a tree Tj1 is deleted by Algorithm 3.3, that leaf cannot be included in any 

shadow-independent set from the input trees matching the given shadow pattern. 

2. If the pruning algorithm returns that there is no shadow-independent set matching Ph (last 

line of the algorithm), then that result is correct. 

3. Every shadow-independent set on the cycle c, after the pruning algorithm is finished, can be 

expanded to a shadow-independent set on all of the component W. 

4. The total running time of Algorithm 3.3 is 0(\W\2), where by \W\ we mean the total number 

of nodes in all the member trees T-1 in W. 

Proof: 

1. Straightforward. 

2. If the simplification algorithm reports unsatisfiability, it is because one of its trees has become 

empty. If any tree becomes empty, there are no leaves left to put into the shadow-independent 

set. 

3. Suppose we have a shadow-independent set i" on the pruned cycle c. Remember that some 

elements of c are roots of trees tg and thus have been pruned. We must expand I to a shadow- 

independent set on all of W. Remember also that every tree has its root in c. Working out 

from the roots of the trees tg to the leaves of the ia's, we have by construction, that no matter 

what leaf I we picked for the independent set in the parent node T-1 in some tg, we can pick 

leaves /' in each of the children Tf (children in tg) which do not shadow I. Pick any such /"s 

and continue recursively. 
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4. The cycle c and the trees tg can be identified by a standard depth-first search. Since the 

search is just on W, the time is 0(|W|). The remainder of the algorithm is basically a matter 

of checking through all pairs of leaves from adjacent trees, hence the quadratic bound.       D 

Definition 3.1 By a leaf-descendent of a node x of a tree, we mean any descendent of x which 

happens to be a leaf, or x itself if that is a leaf. 

Theorem 3.3 Let c be a simple cycle in Ph as above, containing trees TQ, .. .,T^,,_1. (We simply 

renumber the trees to get them numbered as stated.) There is no shadow-independent set of leaves 

from TQ,..., Ty,_x matching Ph, if and only if the following condition holds: 

Condition (|): 

After Algorithm 3.1 is called (again) on IQ1
 U.. .UTt

fc
M, either some Tf becomes empty 

or 

1. the root of each of these T-1 's has exactly two children — call them c?e$ and Cirt9ht 

(in some order); 

2. if we choose which child of the root of each T-1 to name c^1 and which Cirtght 

correctly, every leaf-descendent of c^ (resp., Ciright) has the same shadow, which 

is 

for i < k" - 1: C(,-+1)r,ff/,t (resp. C(i+1)'e#) and all of its descendents, or 

for i = k" - 1: Cole^ (resp. Con9ht) and all of its descendents. 

Proof: 

=>: We are given the cycle c consisting of T0\.. .,T^,_a. By the simplifications (Algorithm 3.1) 

we performed, each T-1 either (i) consists of just one node, which is not in the shadow of any 

other node in TQ ,..., T^,_15 or (ii) has at least two children, and no node in c shadows more 

than one of these children. 

We start by looking at a very gross approximation to the existence of a shadow-independent 

set. For each T-1 consisting of more than a single node (and hence having at least two children 

of the root by our simplifications), let Aff,..., M4
C' be the maximal subtrees of T/1, i.e. the 

subtrees starting at the children of the root. For the single node T/"s, let M? = TJ1. Now we 
build a directed accessibility graph Q on these Af/'s. One can think of Q as the cycle c with 

most of its nodes — those T/'s which are nontrivial — split into pieces, one per subtree at 

the root of if. 

The nodes of Q are the Af/'s. There is a directed edge in Q from M{ to ^'+1)mod(jk/#) if there 

is a leaf of M\ whose shadow is disjoint from MJ
(i+l)mo^(k„y Since no leaf of Ml snadows 
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more than one of the M3' j,,,n's, there are edges from each M/ to at least all but one of 

the M^i)mod(fc»)'S' and lf th6re iS °nly °ne M^i)mod(*»)' then there iS an ed§e fr°m Ml 

to M3'. i, „.. Thus also there is at least one edge out of each M\. 

Now we claim that if Q has a A/'-cycle then {T0\ . ..,T^,_X} has a shadow independent set. 

For suppose M$>, Mf,..., M$'ji  is a *"-cycle. By the definition of Q, there is a leaf U in 

each Mf whose shadow is disjoint from A^+Y)mod(n" Pick any SUch se(luence of leaves 

l0, h,..., h"-i- Clearly, {/0, 'i, • • •, h"-i} is shadow-independent. 

The basic strategy for constructing a shadow-independent set from Q is this: out of each node 

M\ there is at least one edge in Q. So do a depth first search of Q to find out what nodes 

of Q are accessible from each M3
Q in e edges, 1 < e < k". (This search is in the correctness 

proof; our algorithm does not need to perform the search since it does not need to construct 

the satisfying assignment: it needs only to determine whether one exists.) It follows from the 

above that, from each Mjj, (1) some node M3
0 is accessible in k" edges, and (2) all but at 

most one of the M3
0 's are accessible in k" steps. 

We first show that if Q has no ^''-cycles then the root of each T/1 has exactly two children. First 

suppose the root of some T/1 has only one child; without loss of generality, we may assume it 

to be TQ. Since we performed Algorithm 3.1 immediately before entering this phase, Tft has 

only one node, and M$ = T0\ Tracing forward k" steps along any path through Q, we come 
back to some M3

Q — and thus to MQ , since that's the only one there is. This gives a directed 

k" cycle, and thus an unshadowed set. 

Next, suppose that there is no shadow-independent set, and every T/'s root has at least two 

children, but that some T/ has more than 2 children. Without loss of generality, we may 

assume that 2V'-i's root has at least 3 children. Consider the nodes in Q accessible in k" - 1 

and in k" edges from M$ and MQ
1
. At least two of M^,_15 M^,_x, and Ml„_x are accessible 

from each of M% and MQ
1
; thus one of them, M3

kll_x, is accessible from both. Now there must 
be an edge from M{„_x to at least one of M$ and M^; this edge will complete a k" cycle. 

That completes showing property (|1). 

Next we show part of property (1.2): assuming that there is no shadow-independent set, out 

of each MJ there is exactly one edge in Q. Without loss of generality, choose M0
lefi = M$ and 

MQright -M^. We know there is a path of length k" out of M0
left\ since we assumed there is 

no shadow-independent set in the Tf's, and hence fc"-cycle in G, every such path must lead to 

M0
ri9ht. Similarly, there is a fc"-length path out of M0

ri9ht, and every such path must lead to 

MQle}t. Finally, if there were more than one fc"-length path out of either — say out of M0'
e^ 

— then one of those paths would have to share a node with the path out of MQ"
9
 ', which 

would imply the existence of a fc"-cycle. (Thus we see that Q is a simple Ik" cycle, doubled 
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up on c like a Möbius strip.) Without loss of generality, we may call the nodes of Q accessible 

from M0
left (resp., M0

right) in i edges, 1 < i < k" - 1, M^ (resp., Miright), and we have 

that the only edge out of My,^ (resp., ilW'^) goes to M0
right (resp., M0

/e#). 

Now we prove the rest of property (|2). Suppose that there is some i where there is a leaf 

of Milefi whose shadow is not all of Mi+1
right. (The case for some leaf of Miright whose 

shadow is not all of Mi+ile^ is analogous.) Without loss of generality, we may assume that 

i = 0. We shall now construct a k"-cyc\e in Q, contradicting the assumption that there is no 

shadow-independent set in the set of Tf's. 

Pick w0 to be a leaf in M0
hft whose shadow is not all of Minght, and pick wx to be any leaf 

of Miri9ht which is not in the shadow of w0. For i = 2,.. .,k", pick to; to be any leaf of 

MirigU. By our choice of w0, wi, w0 does not shadow w\. By our analysis above, Wi does not 

shadow W{+i for any i < k" - 1. Finally, again by our analysis above, since Wk"-i £ M{rig l, 

the shadow of uv-i is in M0
nght, so Wk"-\ does not shadow w0. So we have constructed a 

fc"-cycle, contradicting our assumption. 

<S=: Obvious. n 

Proposition 3.4 Condition ({) o/ Theorem 3.3 can be checked in time 0(\W\).   (\W\ is defined 

in Lemma 3.2.) 

Assembling all the pieces we have constructed we have a faster algorithm for checking satisfia- 

bility for our class of pure implicational formulas, giving our fixed parameter tractability result. 

Algorithm 3.4 The Combined Algorithm 

Input: Pure implicational formula <f> with each proposition letter occurring 

at most twice 

Output:      "Satisfiable" or "Unsatisfiable" 

Translate cf> to equisatisfiable formulas {6\,..., 6k'}, as in Section 2. 

Fori = l,...,k' 
Build tree T; as follows: 

Create a root T{ labeled -if. 

For each disjunct hhhS • • ■ Mj of the consequent of 9{, 

Create a child of r; labeled li,l2,- ■ -Jj- 

Mark that child unexplored 

While there are unexplored leaves: 

Pick any unexplored leaf w and mark it explored. 

If the leaf has an negative literal ->a as a label 
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and does note have f as a label 

If there is a 6j with hypothesis ->a 
(there can be only one such 6j by the 2-occurrence restriction) 

For each disjunct l\AhA • • • Alj of the consequent of 6j 

Create a child of w labeled /1A/2A • • • Alj 

Mark that child unexplored. 

Remove all nodes all of whose descendents are labeled f. 

For each shadow pattern Ph, 1 < h < (k - 1) , 

Make a copy T/1 of each of the original trees T{ 

Delete from T-1 all leaves which do not match shadow pattern Ph ■ 
Simplify T-1 as in Algorithm 3.1. 

If the simplification algorithm returned "unsatisfiable" 

continue to next Ph 

For each shadow pattern Ph, 1 < h < (k — l)k, 
Identify the weakly connected components of Ph 

For each weakly connected component W of Ph 

Identify the cycle c and the attached trees tg of Ph 

For each tree tg 

For each node T-1 of tg, starting with the leaves of tg 

and working backwards to the root 

If T/1 has children in tg 

For each child Tf of TJ1 in tg 

For each leaf w of T-1 

If w is in the shadow of every leaf of Tf 

delete w from Tf1. 

Simplify W as in Algorithm 3.1. 
If the simplification algorithm returned "unsatisfiable" 

continue to the next Ph- 

else 
test the cycle c for property (|) of Theorem 3.3 

If property (|) fails for c, continue to next Ph 

Return "Satisfiable". 

Return "Unsatisfiable". 

Putting together the previous complexity results, we have that: 

Theorem 3.5 Satisfiability for pure implicational formulas with at most two occurrences of each 

proposition letter and at most k occurrences ofi can be checked in time 0(kk ■ n2). □ 
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4    Boolean functions representable by pure implicational formu- 

las 

It is well known that there are Boolean functions which cannot be represented by pure implicational 

formulas, while any such functions can be represented by implicational formulas which allow for 

occurences of the Boolean constant f. We address the question of characterizing those Boolean 

functions which can be represented by pure implicational formulas and show that the number of 

such functions is surprisingly large. 

A Boolean function <p : Bn -»■ B is called an implk&nt of the Boolean function ip iff <p —> ip is a 

tautology. 

Theorem 4.1 A Boolean function ip : Bn —»• B is representable by a pure implicational formula <fi 

iff there is a Boolean variable z, which is an implicant of ip 

Proof: 

Suppose i\> is represented by the pure implicational formula <j>. Then <f> has the form fa —* (fa —> 

... (fa —► z) ■ ■ •)> where z is the rightmost variable of <j>. 

It is easy to see that assigning z to true results in the value of true for <f>. That is, z is an 

implicant of <j) and so of ip. 

Now suppose the variable z is an implicant of ip. That is, z —► ip is a tautology. Denote by 

tpz=f : Bn~l —> B the Boolean function defined by i\) when assigning z to false. Dehne ipz=t the 

same way, assigning z to true. Applying Shannon decomposition to ip and z we obtain: 

i;   =    (z/\fa=t)\/(zMpz=f) 
=   z\l i>z=f (because z is an implicant of ip) 

=    (^ _» z) —► z (fa is a Boolean formula representing ipz=f 

consisting of Boolean variables, the con- 

stant fand the operator —►.) 

=   (<£2 _>. z) _* z (</>2is obtained from fa by substituting ev- 

ery occurence of f in fa by the variable 

z. That is, fa is a pure implicational for- 

mula.) 
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and <£ is a pure implicational formula. a 

Our proof of Theorem 4.1. tells us more about Boolean functions representable by pure impli- 

cational formulas. If i> is representable by a pure implicational formula then there is a Boolean 

variable z, which is an implicant of ip. If we fix however the value of z to false, the function 

V>z=f : B71'1 ->■ B can be an arbitrary Boolean function without any restriction. This immediately 
yields upper and lower bounds on the number in of Boolean functions ip : Bn -> B representable 

by pure implicational formulas. 

Corollary 4.2 22""1 < in < n22" '. □ 

From Corollary 4.2, the number of Boolean functions in n arguments representable by pure 

implicational formulas is about the square root of the number of all Boolean function in n arguments. 
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